NIGAKILACTONES: STEREOSTRUCTURE AND NUCLEAR OVERHAUSER EFFECTS

Tatsushi Murae, Tôru Ikeda, Takahiko Tsuyuki, Tadaaki Nishihama and Takeyoshi Takahashi*¹ Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

and

Kazuo Tori

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, Japan (Received in Japan 2 September 1971; received in UK for publication 15 September 1971)

A number of bitter principles have been isolated from <u>Picrasma</u> ailanthoides Planchon (= <u>P. quassioides</u> Bennett), and their structures have been described in recent years (1, 2). We report here intramolecular nuclear Overhauser effects (NOE) (3) observed for nigakilactones C (1a, 1c) and E (1b, 1c); the results have confirmed the stereostructures for nigakilactones A, B, C, E, F, and J, and nigakihemiacetal A and C.

The structure Ia was previously given for nigakilactone E (1b, 1c) on the basis of its transformation into quassin (III) (4) together with the presence of a partial structure (Aa) deduced from the observed spin-coupling features of the three adjacent protons, H_a , H_b , and H_c ($J_{ab} = 11.3$ and $J_{bc} = 9.3$ Hz), which are apparently in axial-axial relationships. The conformation of Ia is represented by I'a whose C ring is in a chair form to account for the J-values. However, an alternative structure (IIa) with its C ring in a boat form (II'a) is compatible with the above coupling data.

The presence of NOE's between 11-H and 10-Me, between 11-H and 8-Me, between 13-OH and 8-Me, and between 12-H and 9-H, as shown in the Table, provides confirmatory evidence that 11-H, 13-OH, 8-Me, and 10-Me are in <u>cis</u> relationships to one another, and that 12-H and 9-H are oriented toward the same side from the molecular plane of nigakilactone E. Since the β -configuration of the 8- and 10-Me's and the a-configuration of 9-H have already been demonstrated (1b, 1c), both 11-H and 13-OH must be in the $\beta(axial)$ -configuration and 12-H in the $\alpha(axial)$ one. These results lead to the conformation (I'a), thus confirming the structure (Ia) for nigakilactone E. An alternative structure (IIa) with the conformation

^{*1} Correspondences should be addressed to this author.

(Ia: R=OH; nigakilactone E) (Ib: R=H ; nigakilactone C)

(I'a: R = OH) (I'b: R = H)

(V: nigakilactone J)

(IIa: R = OH) (IIb: R = H) (II'a: R = OH) (II'b: R = H)

(IVa: $R_1 = OH$, $R_2 = OH$, $R_3 = H_r$ R₄=O; nigakilactone A) (IVb: $R_1 = OH$, $R_2 = OMe$, $R_3 = H$, R4=0; nigakilactone B) (IVc: $R_1 = OH$, $R_2 = OMe$, $R_3 = OH$, $R_4 = O$; nigakilactone F) (IVd: R1=OH, R2=OMe, R3=OH, R4=H, OH; nigakihemiacetal A) R₄=H, OH; nigakihemiacetal C) (IVe: $R_1 = OH$, $R_2 = OH$, $R_3 = H_{,}$

TABLE

Nuclear Overhauser effects (increases in integrated signal intensities, %)			Chemical shifts (8, ppm downfield from TMS) and coupling constants (J, Hz)		
Observed protons	Saturated protons	NOE		(Ia)	(ІЬ)
	(Ia)	·······	4-Me	1.08 d	1.10 d
3-н	2-0Me	25	13-Me	1.24 s	1.04 s
11-н	12-OMe	nîl	10-Me	1.26 s	1.28 s
13-OH	12-OMe	5 ^b	8-Me	1.52 s	1.28 s
7 -H	8-Me	8	11-0Ac	1.97 s	1.97 s
11-H	8-Me	14	13-OH	2.39 s	
13-OH	8-Me	2 ^b	15a-H	2.45 q	
11-н	10-Me	13	9-H	2.56 d	2.57 d
11-н	13-Me	nil	156-н	2.70 q	
12-H	13-Me	12	12-H	3.36 d	3.19 q
13-OH	13-Me	5 ^b	12-OMe	3.53 s	3.45 s
156-Н	13-Me	12 ^b	2-OMe	3.56 s	3.56 s
11-н	13-OH	4	7-H	4.17 m	4.18 m
12-H	9-H	15	3-н	5.14 d	5.15 d
9-H	12-H	8 ^b	11-н	5.52 q	5.25 q
15a-H	12-H	٥ ^b			
	(Ib)		J3,4	2.5	2.5
3-н	2-0Me	23	J _{9,11}	11.3	11.4
11 -H	12-OMe	nil	J11,12	9.3	9.3
3-н	4-Me	11	J _{12,13}	*	11.0
11-н	8- and 10-Me's	16	J _{14,150}	11.5	
11-н	13-Me	nil	J _{14,15} β	8.3	
9-H	12-H	5 ^b	^J 15α ,15β	(-)18.6	

PMR Spectral Data on Nigakilactones E (Ia) and C (Ib) in CDCl₃^a

^a The PMR spectra were taken with a Varian HA-100 spectrometer operating at 100 MHz in the frequency-swept and internal TMS-locked mode, for ca. 7% (w/v) degassed solutions in CDCl₃. NOE experiments were performed with sweep rates of 1 Hz per sec for integrations and 0.2 Hz per sec for signals on the spectrometer with a Hewlett-Packard HP-200ABR audiooscillator and an HP-5212A electronic counter. Accuracies are ± 0.01 ppm for chemical shifts, ± 0.2 Hz for coupling constants, and about $\pm 2\%$ for NOE values.

^b Observed by increases in signal heights; long-range spin couplings were hardly detected in these cases.

(II'a) was therefore excluded. Other observations on NOE's (see the Table) are very consistent with the conformation (I'a).

A similar situation is seen for the structure of nigakilactone C (Ib) (1a, 1c), which could also be transformed into quassin (III); thus, besides structure Ib whose C ring adopts a chair conformation (I'b), an alternative structure (IIb) with its C ring in a boat form (II'b) is also compatible with the observed spin-coupling features ($J_{ab} = 11.4$, $J_{bc} = 9.3$, and $J_{cd} = 11.0$ Hz) (Ab). The results of the NOE experiments shown in the Table provide sufficient information about the conformation of nigakilactone C; the observed NOE's between 11-H and 8(β)- and 10(β)-Me's, and between 9(α)-H and 12-H indicate that 11-H and 12-H are $\beta(axial)$ and $\alpha(axial)$, respectively, confirming the conformation (I'b). This leads to the structure (Ib) for nigakilactone C.

Nigakilactones A (IVa) (1a, 1c), B (IVb) (1a, 1c), J (V) (1f), and nigakihemiacetal C (IVe) (1e) have already been correlated with nigakilactone C. Transformations among nigakilactones E, F (IVc) (1b, 1c), and nigakihemiacetal A (IVd) (1d) have also been reported. Therefore, the present confirmation of the structures Ia and Ib for nigakilactones E and C proves that it is unnecessary to correct the structures IVa, IVb, IVc, V, IVd, and IVe, previously given for nigakilactones A, B, F, and J, and nigakihemiacetals A and C, respectively.

REFERENCES

- (a) T. Murae, T. Tsuyuki, T. Nishihama, S. Masuda and T. Takahashi, <u>Tetrahedron Letters</u> 3013 (1969); (b) T. Murae, T. Ikeda, T. Tsuyuki, T. Nishihama and T. Takahashi, <u>Bull. Chem. Soc.</u> Japan <u>43</u>, 969 (1970); (c) T. Murae, T. Tsuyuki, T. Ikeda, T. Nishihama, S. Masuda and T. Takahashi, <u>Tetrahedron <u>27</u>, 1545 (1971); (d) T. Murae, T. Ikeda, T. Tsuyuki, T. Nishihama and T. Takahashi, <u>Bull. Chem. Soc. Japan <u>43</u>, 3021 (1970); (e) T. Murae, T. Ikeda, T. Tsuyuki, T. Nishihama and T. Takahashi, <u>Bull. Chem. Soc. Japan <u>43</u>, 3021 (1970); (e) T. Murae, T. Ikeda, T. Tsuyuki, T. Nishihama and T. Takahashi, <u>Chem. Pharm. Bull. (Tokyo)</u> <u>18</u>, 2590 (1970); (f) T. Murae, T. Tsuyuki and T. Takahashi, <u>Chem. Pharm. Bull. (Tokyo)</u> <u>19</u>, 1747 (1971).
 </u></u></u>
- (a) H. Hikino, T. Ohta and T. Takemoto, <u>Chem. Pharm. Bull. (Tokyo)</u> <u>18</u>, 219 (1970); (b) H. Hikino, T. Ohta and T. Takemoto, <u>Chem. Pharm. Bull. (Tokyo)</u> <u>18</u>, 1082 (1970); (c) H. Hikino, T. Ohta and T. Takemoto, <u>Chem. Pharm. Bull. (Tokyo)</u> <u>19</u>, 212 (1971).
- 3. F. A. L. Anet and A. J. R. Bourn, <u>J. Amer. Chem. Soc</u>. <u>87</u>, 5250 (1965).
- 4. (a) Z. Valenta, S. Papadopoulos and C. Podešva, <u>Tetrahedron</u> <u>15</u>, 100 (1961); (b) Z. Valenta, A. H. Gray, D. E. Orr, S. Papadopoulos and C. Podešva, <u>Tetrahedron</u> <u>18</u>, 1433 (1962); (c) W. A. C. Brown and G. A. Sim, <u>Proc. Chem. Soc.</u> 293 (1964).